REACTIONS OF ORGANOCUPRATES WITH VINYL-TRIFLATES AND RELATED CEPHEMS: A NOVEL APPROACH TO 3-SUBSTITUTED CEPHALOSPORINS

Joydeep Kant*, Chester Sapino Jr., and Stephen R. Baker

Chemical Process Development Pharmaceutical Research and Development Division Bristol-Myers Squibb Company Syracuse, New York 13221-4755

Abstract: Vinyl-triflates and related 3-substituted cephems readily undergo addition-elimination reactions with a variety of organocuprates to form new carbon-carbon bonds. This chemistry presents a novel approach to the synthesis of 3-alkyl, 3-aryl, and 3-alkenylcephalosporins.

Reactions on substrates containing carbon bound leaving groups by organocuprates are conceptually among the most straightforward operations for the formation of new carbon-carbon bonds.¹ Several years ago, Mc Murry demonstrated that enol-trifluoromethanesulfonates (enol-triflates) underwent *regio* and *stereo* specific coupling in high yield with a wide variety of organocuprate reagents.² In connection with our ongoing research on semi-synthetic cephalosporins, we were looking into methods to gain a convenient access to 3-alkyl, -aryl, and -alkenyl cephems without going through cumbersome procedures. Since 3-hydroxycephems 1 are readily available,³ we decided to take advantage of Mc Murry's chemistry and explore the reactions of trifloxycephems 2a with a variety of organocuprates in order to synthesize our target compounds.⁴ (Scheme 1)

The starting 3-trifloxycephem 2a was prepared by treating 3-hydroxycephem 1 with triflic anhydride in the presence of N,N-diisopropylethylamine at -78 °C. Treatment of 2a with Me₂CuLi (lower-order cuprate) or Me₂Cu(CN)Li₂ (higher-order cuprate) provided the desired product, in a satisfactory yield, but as a mixture of Δ^2/Δ^3 -cephems (entries 1&2, Table 1). However, admixing the same cuprates with 2.0 equivalents of BF₃•Et₂O suppressed the isomerization (entries 3&4, Table 1).

Base-catalyzed isomerization of Δ^2/Δ^3 -cephems is known.⁵ The isomerization is most likely induced by the cuprate itself as cuprates are known to be basic in nature.^{1b} On the other hand, the organo-copper reagents generated along with BF₃•Et₂O afford altogether different reactive species (cuprate-Lewis acid combination)⁶ which not only participate in the addition-elimination reactions effectively but, most importantly, prevent the base-catalyzed isomerizations.

Table	1
-------	---

Entry	Cuprate	Ratio of 4a:4b (NMR)	%Yield
1	Me ₂ CuLi	1:1	65
2	Me ₂ Cu(CN)Li ₂	2:3	65
3	Me ₂ CuLi/BF ₃ •Et ₂ O	100:0	65
4	Me ₂ Cu(CN)Li ₂ /BF ₃ •Et ₂ O	98:2	85

V=NHCOCH2OC6H5

The chemistry was extended further by treating 2a with a variety of organocuprates including alkyl, aryl, vinyl, and (Z)-propenyl reagents (Table 2). A stereospecific reaction (>98%) was observed between 2a and (Z)-di-1propenylcuprate (entries 8, 9 & 11, Table 2). We also explored the potential of other vinylic sulfonates⁷ to engage in reactions and discovered that vinyl tosylate and nosylate (*p*-nitrobenzenesulfonate) also reacted equally well with the cuprates to form carbon-carbon bonds (entries 10, 11 & 12, Table 2). Interestingly, the displacement of mercapto-1-methyl-tetrazole⁸ to yield the corresponding product in high yield (entry 13, Table 2) was also observed.

In summary, we have developed a facile method to synthesize a variety of 3-alkyl, 3-aryl, and 3-alkenyl cephalosporins⁹ from accessible starting materials. Furthermore, we have also demonstrated the utility of lower and higher order cuprates for substituting C-C for C-X bonds at the C3 sp² carbon in cephalosporins.¹⁰ We are continuing our endeavors to delineate the scope of this chemistry.

Acknowledgement. We would like to thank Professor Gary Posner for helpful discussions and Ms. Char Lloyd for typing this manuscript.

Table 2

R ₁	s	
	-N.	.
0-	Ý CO.F	`X :
		-

Entry	X	E	R ₁	Cuprate	R ₂	% Yield ^a
1	OTf	PMB	G	Me ₂ CuLi	Me	75
2	OTf	DPM	V	Et ₂ CuLi	Et	75
3	OTf	DPM	v	n-Bu ₂ CuLi	n-Bu	60
4	OTf	DPM	v	t-Bu ₂ CuLi	t-Bu	70
5	OTf	DPM	V	Ph ₂ CuLi	Ph	65
6	OTf	DPM	V	(CH ₂ =CH) ₂ CuLi	CH ₂ =CH	I 35
7	TO	DPM	v	(CH ₂ =CH) ₂ (CN)Li ₂	CH2=CH	42
8	-OTf	DPM	V	(∖∕) ₂ CuLi ^b	\checkmark	29
9	OTf	DPM	V	(\∕) ₂ Cu(CN)Li ₂ b	\checkmark	55 ^C
10	OTs	DPM	v	Me ₂ CuLi	Ме	62
11	OTs	DPM	V	(∖∕) ₂ Cu(CN)Li2 ^b	\cdot	59 ^C
12	ONs	DPM	V	Me ₂ CuLi	Me	35
13	N−N. S-Ľ,Ň Me	РМВ	G	Me ₂ CuLi	Мө	81

^aUnoptimized isolated yields after chromatography.

^bCuprate prepared by transmetallation reaction: ref 11

^cIsolated as a mixture of Δ^2 -and Δ^3 -cephems (1:1) V = NHCOCH₂OC₆H₅; G = NHCOCH₂C₆H₅ DPM = CH(C₆H₅)₂; PMB = CH₂C₆H₄-p-OCH₃

REFERENCES AND NOTES

- (a) Posner, G. H. An Introduction To Synthesis Using Organocopper Reagents; Wiley: New York, 1980. (b) Posner, G. H. Org. React. 1972, 19, 1. (c) Posner, G. H. Org. React. 1975, 22, 253. For reviews on higher order cuprates, see: (d) Lipshutz, B. H. Synthesis, 1987, 325. (e) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984, 40, 5005.
- (a) Mc Murry, J. E.; Scott, W. J. Tetrahedron Lett. 1980, 4313. (b) Mc Murry, J. E.; Scott, W. J. Tetrahedron Lett. 1983,1979. Coupling reactions of vinyl triflates with cyanocuprate containing allylic ligands have recently been reported, see: Lipshutz, B. H.; Elworthy, T. R. J. Org. Chem. 1990, 55, 1695.
- Scartazzini, R.; Bickel, H. Helv. Chim. Acta. 1984, 57, 1919. For a review on 3- hydroxycephems, see: Kukolja, S.; Chauvette, R. R. In Chemistry and Biology of β-Lactam Antibiotics; Morin, R., Gorman, M., Eds.; Academic Press: New York, 1982, Volume 1, Page 93.
- 4. For a literature precedent on organocuprate coupling on C3-chloro and vinylcephems, see: Spry, D. O.; Bhala, A. R. *Heterocycles*, 1985, 23, 1901.
- 5. Cocker, J.D.; Eardley, S.; Gregory, G.I.; Hall, M.E.; Long, A.G. J. Chem.Soc. (c). 1966, 1142.
- 6. For a detailed explanation regarding the role of BF₃•Et₂O in reactions of cuprates, see: Lipshutz, B. H.; Ellsworth, E. L.; Siahaau, T. J. J.Am. Chem.Soc. 1989, 111, 1351.
- 7. The sulfonates were prepared according to the literature procedures: Spitzer, W. A. United States Patent, 1976, # 3,985,737.
- The cephem was prepared according to the literature procedure, see: Farina, V.; Baker S. R.; Hauck, S. J.Org. Chem. 1989, 54, 4962. Reaction of organocuprates with β-alkyl thio α,β-enones, see: Posner, G. H.; Brunelle, D. J. JCS. Chem. Comm. 1973, 907 and Dieter, R. K.; Silks, L. A. J. Org. Chem. 1986, 51, 4687.
- 9. All new compounds were fully characterized by IR, NMR, MS, and HRMS, or combustion analyses.
- 10. A typical procedure for the cuprate reaction is as follows: In a 10-mL flask under argon or nitrogen was added CuI or CuCN (0.75 mmo1) followed by dry THF (1.5 mL) and the slurry was cooled to -78 °C. Using a syringe, the alkyllithium (1.5 mmol) was added dropwise and the mixture was allowed to warm until homogenous. The reaction mixture was re-cooled to -78 °C and immediately BF₃ Et₂O (1.5 mmol) was added, followed by (0.34 mmol) of 2a. The mixture was stirred for 2-5 hrs at -78 °C before quenching in saturated NH₄Cl solution. The pure compounds were isolated by flash chromatography.
- (Z)-1-(Propenyl)₂Cu(CN)Li₂ and (Z)-1-(propenyl)₂CuLi were prepared by transmetallation between (Z)-propenyl-tri-n-butylstannane and higher-order cyanocuprate or lower-order cuprate, as described in: Behling, J.R.; Babiak, K.A.; Ng, J.S.; Campbell, A. L.; Moretti, R.; Koerner, M.; Lipshutz, B. H. J. Am. Chem. Soc. 1988, 110, 2641.

(Received in USA 4 April 1990)